

10th Ave Estates Stormwater Management Report

Graham Design & Construction 1260 2nd. Ave. East,

Unit 2 Owen Sound, ON, N4K 2J3

Clearwater Shores Inc. 37 Alice Street Allenford ON N0H 1A0 CANADA

> June 4th 24003

10th Ave Estates Stormwater Management Report June 2024

Contents

1	lr	ntroduction	1
2	E	Existing conditions	1
	2.1	Pre-Development Stormwater	1
	2.2	Pre-Development Runoff Results	1
3	Ρ	Proposed Conditions	2
	3.1	Post-Development Runoff Conditions	2
	3.2	Post Development Runoff Results	2
	3.3	Proposed Stormwater Management Facility Design	3
	3.4	Proposed Stormwater Quality Controls	4
4	Е	rosion and Sediment Control	5
5	С	Conclusions	5

Tables

Table 1 - Pre-Development Peak Runoff Flow Rates	2
Table 2 – Post-Development Peak Runoff Flow Rates	3
Table 3 - Proposed Stormwater Management Facility	4

Figures

Figure 1 – Pre-Development Drainage Plan

Figure 2 – Post Development Drainage Plan

Appendices

Figures

Appendix A – Pre-Development Stormwater

Appendix B – Post-Development Stormwater

Appendix C – Emergency Spillway

Appendix D – Oil Grit Separator

10th Ave Estates Stormwater Management Report

June 2024

Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of Clearwater Shores Inc.

In the preparation of the various instruments of service contained herein, Clearwater Shores Inc. was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than Clearwater Shores Inc. For its part, Clearwater Shores Inc. has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct, and free of errors at the time of consultation. As such, the comments, recommendations, and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. Clearwater Shores Inc., its employees, affiliates, and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third-party materials and documents.

Clearwater Shores Inc. makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

1 Introduction

Clearwater Shores Inc. has been retained by Graham Design and Construction to prepare a Stormwater Management Report for the 10th Avenue Estates development. The new development is a 2.53 ha residential site plan development on the northeast side of Owen Sound. The proposed new development consists of a 29-unit apartment, a 34-unit apartment, two single story 3-plex residences and four single story 4-plex residences. The development will extend off the end of the 10th Avenue East cul-de-sac, where there currently exists a residential subdivision. The site plan will be bound to the South by the existing subdivision. The east side of the proposed development will be adjacent to the Kenny Drain with the northern and western sides abutting woodlands and residential lots.

2 Existing conditions

2.1 Pre-Development Stormwater

The 10th Ave Estates site exists in the northeast portion of Owen Sound, extending off of 10th Ave East. To the south and west lie residential properties, with a single industrial property south of the site as well. The east side of the land borders the Kenny drain with woodlands to the north.

The total area of development of 10th Ave Estates is 2.53 ha. The project site is currently vacant with some trees and low-lying shrubs and vegetation.

The topography of the site allows for significant stormwater runoff relief. The current highpoint exists on the west of the site along the preexisting subdivision on 10th Ave E. From the west there is a consistent decrease in elevation towards the eastern side of the site. The natural slope allows for water to drain eastward where it discharges into the Kenny Drain.

Soil mapping from the area (obtained from Ontario Geohub) indicates that much of the site consists of Dunedin Clay, with a hydrologic soil group of C. There was also a geotechnical study completed for the site (Geotechnical Investigation, GEI Consulting Engineers and Scientists, 2024) which indicated mainly Clayey Silt soils near the surface, which is consistent with the soil mapping.

2.2 Pre-Development Runoff Results

A PCSWMM model was developed for the site to determine the pre-development peak runoff rates from the site for the 2- and 5-year storm events. Since all drainage

10th Ave Estates Stormwater Management Report

June 2024

discharges fairly uniformly to the Kenny Drain, a single catchment encompassing the whole site was considered (see Figure 1). The Curve Number infiltration method was applied in the model with a CN value of 86. This is consistent with rangeland or pasture type conditions over a type C soil. The model applied a 3-hour Chicago design storm, consistent with the City of Owen Sound criteria. The modeling results are shown below, with complete modeling details found in Appendix A.

Table 1 - Pre-Development Peak Runoff Flow Rates

Design Storm	Peak Runoff Flow (m³/s)
2-Year	0.031
5-Year	0.060

As per the City of Owen Sound criteria, post development peak flow rates must not exceed the pre-development flow rates for the 2- and 5-year design storm events. All infrequent storm events up to the 100-year event must not exceed the pre-development 5-year peak runoff noted in Table 1 above.

3 Proposed Conditions

3.1 Post-Development Runoff Conditions

Post development, the drainage patterns on site will resemble the existing drainage conditions. The highpoint of the site will remain on the west side of the site adjacent to the 10th Ave East subdivision and sloping will allow for water to drain eastwards toward the Kenny Drain.

A storm sewer network will be constructed along the proposed roadways. This network is intended to convey the minor system from the roadways, parking areas and front yards. The roadways will convey the major system flows in a similar fashion. The storm sewer network and internal roads will discharge into the proposed stormwater management pond on the northeast side of the site. Rear yard swales along the north and south site boundaries will also convey rear roof and yard drainage to the pond. The stormwater management pond will discharge controlled flows into the Kenny Drain.

3.2 Post Development Runoff Results

As per existing conditions, a PCSWMM model was developed to determine the post development peak runoff flows. As shown in Figure 2, the site was divided into 3 Clearwater Shores Inc.

24003 10th Ave Estates

10th Ave Estates Stormwater Management Report

June 2024

catchments representing areas draining to the north swale, the internal drainage network and the south swale respectively. The proposed conditions curve number was updated to 74, representing the future maintained lawns throughout the property. The imperviousness for each catchment was measured off the proposed site plan. Complete catchment parameters can be found in Appendix B. The model also included the proposed stormwater management pond and control orifice, described in further detail below.

Detailed modeling was completed for the 2 through 100-year design storm events. Complete modeling details can be found in Appendix B with results presented below.

Design Storm	Pre-Development Peak Runoff Flow (m³/s)	Post-Development Peak Runoff Flow (m³/s)		
2-Year	0.031	0.019		
5-Year	0.060	0.028		
100-Year	Per 5-Year	0.038		

 Table 2 – Post-Development Peak Runoff Flow Rates

As shown in the table above, all peak flows are maintained at or below the 5-year predevelopment runoff rate, for storms up to the 100-year design storm.

3.3 Proposed Stormwater Management Facility Design

The stormwater management facility is proposed to be a dry pond, to provide the necessary quantity control. The proposed outlet will consist of an outlet micropool and a headwall with a 300mm sewer. The sewer will be fit with a 130mm orifice plate to control the 2 through 100-year storms. The proposed pond outlet is set at an elevation of 207.20m. The Kenny Drain Regulatory flood elevation in the vicinity of the pond is about 206.33. Therefore, the pond outlet elevation ensures free flowing conditions. Key pond characteristics and elevations are shown below.

10th Ave Estates Stormwater Management Report

June 2024

Pond Elevations	Feature / Storm
207.20	Pond Bottom, Invert of 130mm Orifice
207.84	5-Year Water Level
208.35	100-Year Water Level
208.50	Emergency Spillway Elevation
208.70	Freeboard
209.00	Top of Pond

During storm events exceeding the 100-year peak flow, or in the event of a blockage, an emergency spillway has been provided within the stormwater pond. The spillway is a 10m wide trapezoidal weir on the east side of the facility, discharging toward the Kenny Drain. The spillway has been sized to convey the uncontrolled 100-year design storm and Regional Timmins storm. The spillway weir is for emergency situations only and will no be used for the normal operation of the 2 through 100-year design storm events. Complete details of the spillway design can be found in Appendix C.

3.4 Proposed Stormwater Quality Controls

As per the MECP Stormwater Management Planning and Design Manual (2003), a dry pond can provide 60% Total Suspended Solids (TSS) removal. In addition, it is proposed to include an Oil Grit Separator (OGS) upstream of the pond for all areas directed to the storm sewers. The proposed OGS is a Stormceptor EF10 which provides up to 61% TSS removal, or an approved equivalent. See Appendix D for the OGS sizing. However, general practice indicates that only 50% TSS removal from OGS units will be accredited.

Therefore, assuming an OGS with 50% TSS removal and a dry pond with 60% OGS removal in a treatment train configuration yields the following overall TSS removal.

Removal Rate = 50 + 60 - [(50 x 60) / 100] = 80%

Therefore, enhanced level quality control, or 80% TSS removal, can be achieved through the site.

The rear yards, that drain to the north and south swales consist of clean rooftop and rear yard drainage and therefore do not require further quality control.

10th Ave Estates Stormwater Management Report

June 2024

4 Erosion and Sediment Control

Erosion and sediment controls will be implemented on-site prior to construction. The controls will consist of a combination of sediment fence and straw bale check dams within the on-site swales and an entrance mudmat.

These controls have been specified on the Erosion and Sediment Control Plan, including notes pertaining to the maintenance of the control works.

Swale and Straw Bale Flow Check Dams

Swales have been provided throughout the site to collect any runoff during construction. Check dams within the swales will reduce the velocity of the runoff promoting sediment settling.

Silt Fencing

Silt fence will be installed where required to intercept sheet flow. It should be noted that additional silt fencing may be added based on field decisions by the Engineer and Developer prior to, during and following construction until the site is stabilized.

Mudmat

A mudmat located at the proposed site entrance off 10th Avenue East will limit tracking of mud off of the site.

Dust Suppression

During earthwork activities, the Contractor will ensure that measures for dust suppression are provided as required, such as the application of water or lime.

Topsoil Stockpiles

It will be necessary to strip topsoil prior to earth moving. A temporary topsoil stockpile will be located on the site with silt fencing provided around the stockpile. A stockpile that will be left to stand longer than 30 days will require seeding.

5 Conclusions

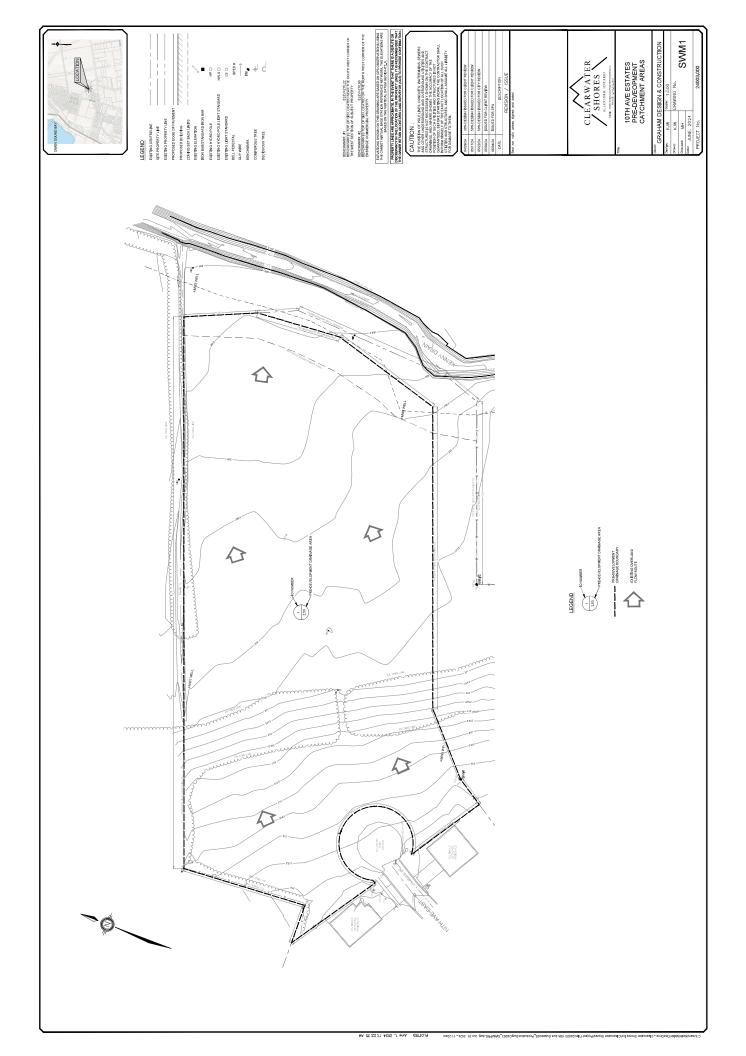
• The proposed stormwater facility has been designed to ensure post development peak runoff flows are at or below existing conditions 5-year runoff flows.

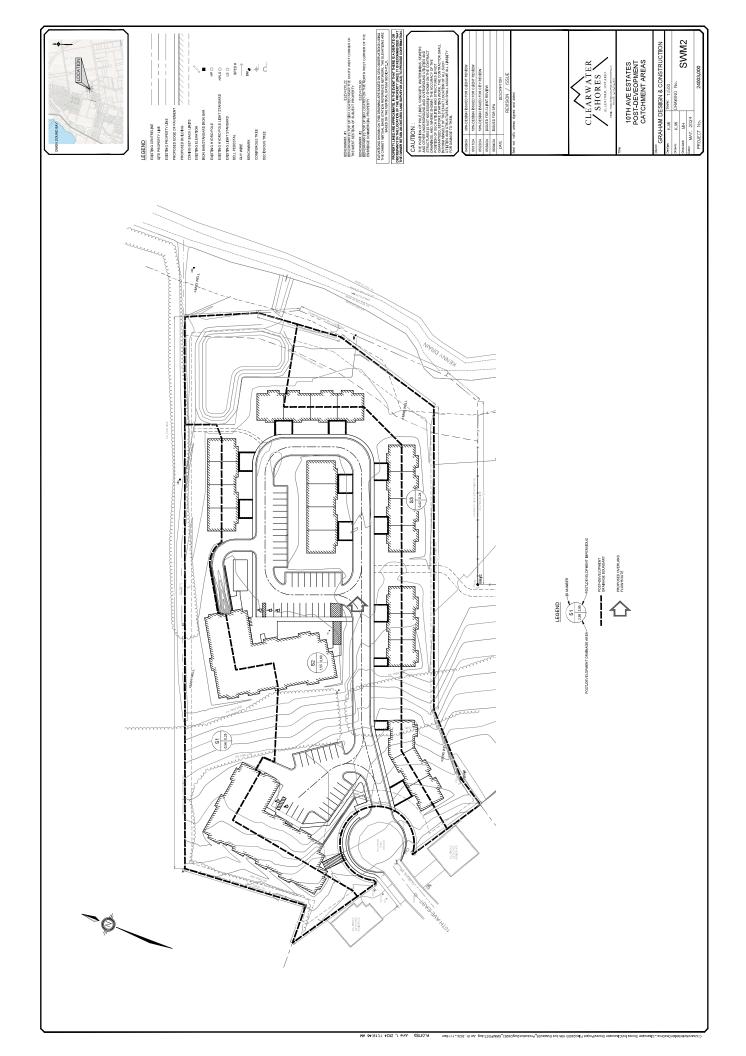
Clearwater Shores Inc. 24003 10th Ave Estates

10th Ave Estates Stormwater Management Report

June 2024

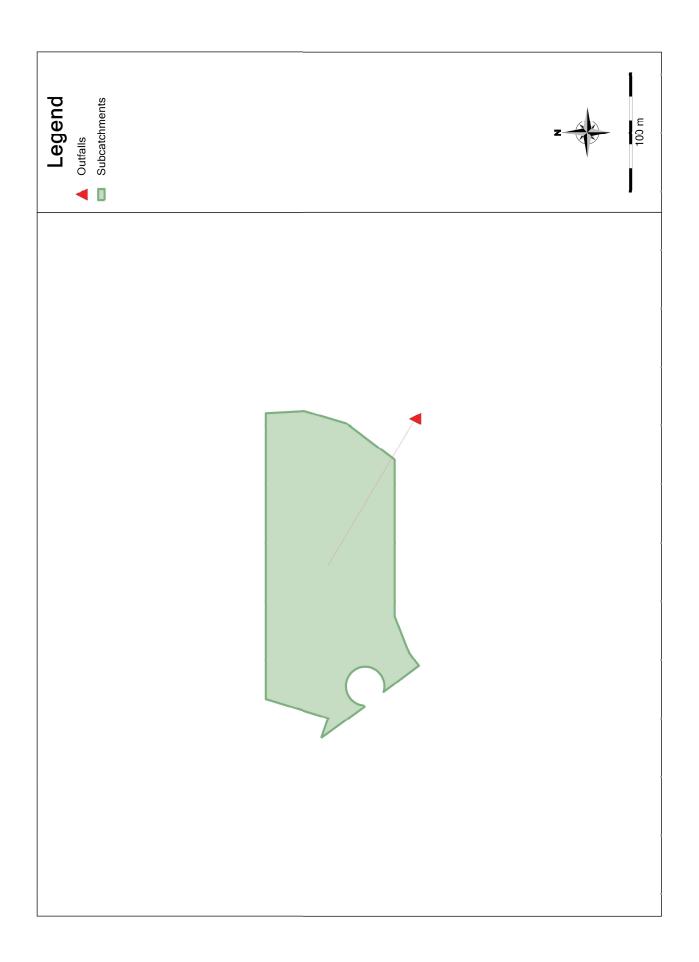
- The proposed stormwater facility has been designed to control the 100-year storm with the capacity to safely discharge the entirety of the uncontrolled flow (100-Year and Regional) in the event of a larger storm.
- Enhanced level quality control will be achieved through the use of a dry pond and OGS.


Report Prepared By:



Michelle Henry, P.Eng. Clearwater Shores Inc.

Figures



Appendix A

Pre-Development Stormwater

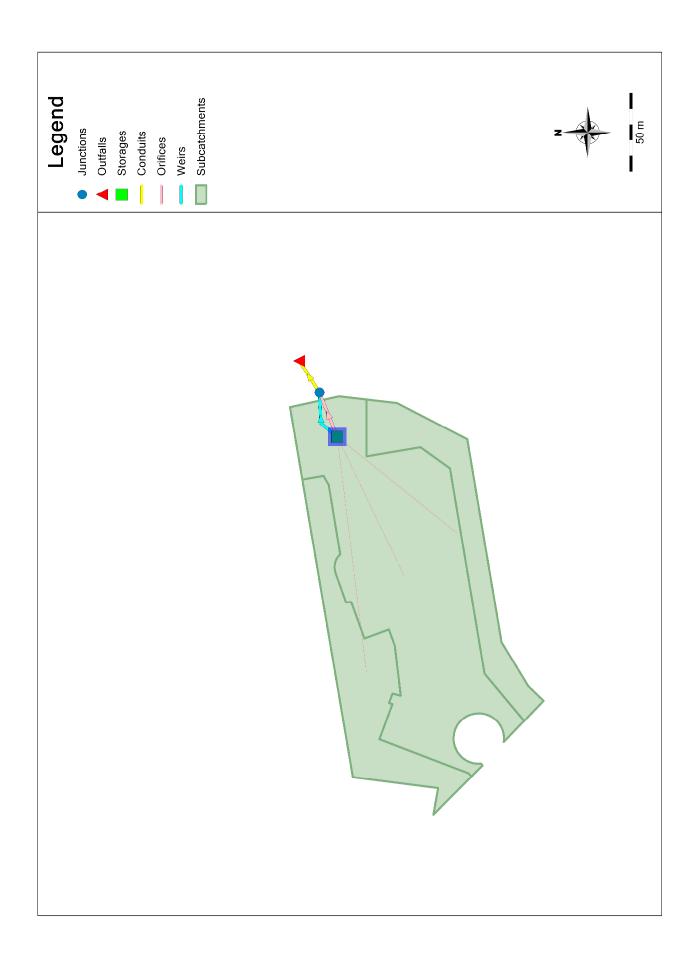
Element Count							
**************************************	- 4						
Number of subcatchme							
Number of nodes							
Number of links							
Number of pollutants							
Number of land uses	0						

Raingage Summary *******							
			Data	Recordi			
Name	Data Source		Type	Interva			
a 2y Chicago 3h	a 2v Chicago 3h		INTENSITY				
b 5yr Chicago 3h			INTENSITY				
c_25yr_Chicago_3h			INTENSITY	5 min			
d_100yr_Chicago_3h	d_100yr_Chicago_3h		INTENSITY	5 min			
* * * * * * * * * * * * * * * * * * * *	*						
Subcatchment Summary							
Name	Area Widt	h %Imperv	7 %Slope	Rain Gag	e	Outlet	
S1	2.52 125.8	35 5.00	3.0000	b_5yr_Ch	icago_3h	OF1	
* * * * * * * * * * * *							
Node Summary *******							
		Invert		Ponded	External		
Name	Type	Elev.	Depth	Area	Inflow		

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

OF1 OUTFA	LL	0.00	0.00	0.0	
* * * * * * * * * * * * * * *					
Analysis Options *******					
Flow Units Process Models: Rainfall/Runoff RDII Snowmelt Groundwater Flow Routing Water Quality Infiltration Method Surcharge Method Starting Date Ending Date Antecedent Dry Days Report Time Step Dry Time Step	YES NO NO NO CURVE_NUMBER EXTRAN 04/28/2024 00:00 04/29/2024 00:00 0.0 0:01:01				
* * * * * * * * * * * * * * * * * * * *	Volume	De	pth		
Runoff Quantity Continuity	hectare-m				
Total Precipitation	0.108	42.	929		
Evaporation Loss	0.000	0.	000		
Infiltration Loss	0.065		901		
Surface Runoff	0.040		728		
Final Storage	0.003	1.	305		
Continuity Error (%)	-0.011				
******	Volume	Vol	ume		
Flow Routing Continuity	hectare-m	10^6			
Dry Weather Inflow	0.000		000		
Wet Weather Inflow	0.040		396		

Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.040	0.396
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	


	Total	Total	Total	Total	Imperv	Perv	Total	Total
Peak Runoff								
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff								
Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
CMS								
Sl	42.93	0.00	0.00	25.90	2.05	13.68	15.73	0.40
0.06 0.366								

Analysis begun on: Wed May 29 20:45:05 2024 Analysis ended on: Wed May 29 20:45:05 2024 Total elapsed time: < 1 sec

Appendix B

Post-Development Stormwater

EPA STORM W	ATER MANAGEMENT	MODEL - VERSION	5.2 (Build 5.2.4)	

***** Element Count Number of rain gages 5 Number of subcatchments ... 3 Number of nodes 3 Number of links 3 Number of pollutants 0 Number of land uses 0

***** Raingage Summary ********

Name	Data Source	Data Type	Recording Interval
a_2y_Chicago_3h	a_2y_Chicago_3h	INTENSITY	5 min.
b_5yr_Chicago_3h	b_5yr_Chicago_3h	INTENSITY	5 min.
c_25yr_Chicago_3h	c_25yr_Chicago_3h	INTENSITY	5 min.
d_100yr_Chicago_3h	d_100yr_Chicago_3h	INTENSITY	5 min.
Timmins_Storm_(0-25)	Timmins_Storm_(0-25)	INTENSITY	60 min.

Subcatchment Summary

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
S1 S2 S3	0.42	26.18	25.00	4.0000 d_100yr_Chicago_3h 1.0000 d_100yr_Chicago_3h 3.0000 d_100yr_Chicago_3h	SU1

******* Node Summary

* * * * * * * * * * * *		-					
Name	Type	Inve Ele			Ponded Area	External Inflow	
J1	JUNCTION	207.	00 1.	80	0.0		
OF1 SU1	OUTFALL STORAGE	206. 207.		00 80	0.0		
201	STORAGE	207.	20 1.	00	0.0		
* * * * * * * * * * * *							
Link Summary *****							
Name	From Node	To Node	Type		Len	ıgth %S	lope Roughness
C2	J1	OF1	CONE		2	4.1 4.	1509 0.0350
C1 W1	SU1 SU1	J1 J1	ORIFICE WEIR				
* * * * * * * * * * * * * * * *	* * * * * * *						
Cross Section 8							
Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C2	TRAPEZOIDAL	1.00	8.00	0.71	11.00	1	36.94
* * * * * * * * * * * * * * * * *	- +						
Analysis Optior	15						
******	15						
***************** Flow Units Process Models:	ns ** CMS						
Flow Units Process Models: Rainfall/Rund	ns *** CMS 						
Flow Units Process Models: Rainfall/Runc RDII	ns ** CMS						
Flow Units Process Models: Rainfall/Runc RDII Snowmelt	ns *** CMS YES NO						
Flow Units Process Models: Rainfall/Runc RDII Snowmelt Groundwater . Flow Routing	ns ** CMS off YES 						
Flow Units Process Models: Rainfall/Runc RDII Snowmelt Flow Routing Ponding Allow	ns ** CMS off YES 						

Flow Routing Method DYNWAVE

 Flow Routing Method
 DYNWAVE

 Surcharge Method
 EXTRAN

 Starting Date
 04/28/2024 00:00:00

 Ending Date
 04/28/2024 00:00:00

 Antecedent Dry Days
 0.0

 Report Time Step
 00:00:01

 Wet Time Step
 00:01:00

 Dry Time Step
 00:01:00

 Routing Time Step
 1.00 sec

 Variable Time Step
 %

 Maximum Trials
 8

 Number of Threads
 1

 Head Tolerance
 0.001500 m

Depth	Volume	******
mm	hectare-m	Runoff Quantity Continuity
	nectare-m	*****************************
69.443	0.176	Total Precipitation
0.000	0.000	Evaporation Loss
23.448	0.000	Infiltration Loss
44.441	0.039	
		Surface Runoff
1.612	0.004	Final Storage
	-0.083	Continuity Error (%)
Volume	Volume	*****
10^6 ltr	hectare-m	Flow Routing Continuity
10 0 101	neccare m	************
0.000	0.000	Dry Weather Inflow
1.126	0.113	Wet Weather Inflow
0.000	0.000	Groundwater Inflow
0.000	0.000	RDII Inflow
0.000	0.000	External Inflow
1.122	0.112	External Outflow
0.000	0.000	Flooding Loss
0.000	0.000	Evaporation Loss
0.000	0.000	Exfiltration Loss
0.000	0.000	Initial Stored Volume
0.004	0.000	Final Stored Volume
	-0.003	Continuity Error (%)

***** Time-Step Critical Elements None

****** Highest Flow Instability Indexes All links are stable.

***** Most Frequent Nonconverging Nodes Convergence obtained at all time steps.

Bouting Time Step Summary

Routing II.	me step a	зипппат у			
* * * * * * * * * *	* * * * * * * * *	*****			
Minimum Ti	me Step		:	0.50	sec
Average Ti	me Step		:	1.00	sec
Maximum Ti	me Step		:	1.00	sec
% of Time	in Steady	/ State	:	0.00	
Average It	per Step	:	2.00		
% of Steps	Not Conv	verging	:	0.00	
Time Step	Frequence	Les	:		
1.000	- 0.871	sec	:	100.00	8
0.871	- 0.758	sec	:	0.00	8
0.758	- 0.660	sec	:	0.00	8
0.660	- 0.574	sec	:	0.00	DD
0.574	- 0.500	sec	:	0.00	8

Deels Dureff	Total	Total	Total	Total	Imperv	Perv	Total	Total
Peak Runoff Runoff Coeff	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Subcatchment CMS	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
S1 0.11 0.517	69.44	0.00	0.00	32.07	19.58	16.34	35.92	0.20
S2 0.07 0.478	69.44	0.00	0.00	34.81	16.88	16.33	33.21	0.14
s3 0.70 0.728	69.44	0.00	0.00	17.29	40.53	10.00	50.53	0.79

* * * * * * * * * * * * * * * * * * *

Node Depth Summary *********

		Average	Maximum	Maximum	Time of Max	Reported
		Depth	Depth	HGL	Occurrence	Max Depth
Node	Type	Meters	Meters	Meters	days hr:min	Meters
J1	JUNCTION	0.01	0.02	207.02	0 02:35	0.02
OF1	OUTFALL	0.01	0.02	206.02	0 02:35	0.02
SU1	STORAGE	0.32	1.15	208.35	0 02:34	1.15

Node Inflow Summary *****

		Maximum	Maximum		Lateral	Total	Flow
		Lateral	Total	Time of Max	Inflow	Inflow	Balance
		Inflow	Inflow	Occurrence	Volume	Volume	Error
Node	Type	CMS	CMS	days hr:min	10^6 ltr	10^6 ltr	Percent

J1	JUNCTION	0.000	0.038	0	02:34	0	1.12	0.003
OF1	OUTFALL	0.000	0.038	0	02:35	0	1.12	0.000
SU1	STORAGE	0.878	0.878	0	01:10	1.13	1.13	0.000

Node Surcharge Summary

No nodes were surcharged.

Node Flooding Summary

No nodes were flooded.

Storage Volume Summary

Storage Unit	Average	Avg	Evap	Exfil	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 m³	Full	Loss	Loss	1000 m³	Full	days hr:min	CMS
SU1	0.215	13.7	0.0	0.0	0.851	54.4	0 02:34	0.038

Outfall Loading Summary

	Flow	Avg	Max	Total							
	Freq	Flow	Flow	Volume							
Outfall Node	Pcnt	CMS	CMS	10^6 ltr							
OF1	97.87	0.013	0.038	1.122							

System	97.87	0.013	0.038	1.122

Link Flow Summary

		Maximum	Time of Max		Maximum	Max/	Max/			
		Flow	Occurrence		Veloc	Full	Full			
Link	Type	CMS	days	hr:min	m/sec	Flow	Depth			
C2	CONDUIT	0.038	0	02:35	0.40	0.00	0.02			
C1	ORIFICE	0.038	0	02:34			1.00			
W1	WEIR	0.000	0	00:00			0.00			

***** Flow Classification Summary

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
Conduit	/Actual Length	Dry	Up Dry			*	Up Crit			
C2	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.14	0.00

***** Conduit Surcharge Summary *********

No conduits were surcharged.

Analysis begun on: Tue May 28 21:08:10 2024 Analysis ended on: Tue May 28 21:08:10 2024 Total elapsed time: < 1 sec

Appendix C

Emergency Spillway

Project Name:	10th Ave
Project No.:	24003
Created By:	MLH
Date Modified:	2024-05-28

Weir Calculations - Input Parameters									
Width (m) =	10.00								
Coefficient, C =	1.60								
Rectangular =	n								
Side Slope X:1 =	3.00								
Crest Elevation (m) =	208.50								
Incremental Depth (m) =	0.02								

Weir Equation
$$Q = CL(H^{1.5}) + CSH^{2.5}$$

	Weir Calculations - Output Results									
W.S.	Head	Weir Q	Water Surface Elevation							
Elevation (m)	(m)	(m³/sec)	Notes							
208.50	0.00	0.000								
208.52	0.02	0.046								
208.54	0.04	0.130								
208.56	0.06	0.239								
208.58	0.08	0.371	Regional Uncontrolled Flow = 0.28 m ³ /s							
208.60	0.10	0.521	, and the second s							
208.62	0.12	0.689								
208.64	0.14	0.873	100-Year Uncontrolled Flow = 0.88 m ³ /s							
208.66	0.16	1.073								
208.68	0.18	1.288								
208.70	0.20	1.517								
208.72	0.22	1.760								
208.74	0.24	2.017								
208.76	0.26	2.287								
208.78	0.28	2.570								
208.80	0.30	2.866								
208.82	0.32	3.174								
208.84	0.34	3.496								
208.86	0.36	3.829								
208.88	0.38	4.175								
208.90	0.40	4.533	Top of Pond							

Appendix D

Oil Grit Separator

Stormceptor* EF Sizing Report

Province:	Ontario		Project Name:	10th Ave	
ity:	Owen Sound		Project Number:	64839	
earest Rainfall Station:	GODERICH		Designer Name:	Michelle Henry	
limate Station Id:	6122847		Designer Company:	Clearwater Shores	
ears of Rainfall Data:	20		Designer Email:	mhenry@clearwat	ershores.ca
			Designer Phone:	519-379-8164	
Site Name:	10th AVe		EOR Name:		
Drainage Area (ha):	2.5		EOR Company:		
% Imperviousness:	47.00		EOR Email:		
	Coefficient 'c': 0.58		EOR Phone:		
		_			
Particle Size Distribution:	CA ETV			Net Annua	l Sediment
Target TSS Removal (%):	60.0				Reduction
Required Water Quality Rund	off Volume Capture (%):	90.00		Sizing S	ummary
Estimated Water Quality Flow	v Rate (L/s):	56.37		Stormceptor	TSS Removal
Oil / Fuel Spill Risk Site?		No		Model	Provided (%)
Jpstream Flow Control?		No		EF4	45
· Peak Conveyance (maximum) Flow Rate (L/s):			EF6	53
nfluent TSS Concentration (r				EF8	58
Estimated Average Annual Se		756		EF10	61
		750		EF12	64
			Deserves and ad		
			Recommended	-	
	Estima	ated Net A	nnual Sediment (T	SS) Load Reduct	ion (%): 6
		v	Vater Quality Rund	off Volume Capt	ure (%): >

Stormceptor[®] EF Sizing Report

THIRD-PARTY TESTING AND VERIFICATION

Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** and performance has been third-party verified in accordance with the **ISO 14034 Environmental Technology Verification (ETV)** protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle Size (µm)	Percent Less Than	Particle Size Fraction (µm)	Percent		
1000	100	500-1000	5		
500	95	250-500	5		
250	90	150-250	15		
150	75	100-150	15		
100	60	75-100	10		
75	50	50-75	5		
50	45	20-50	10		
20	35	8-20	15		
8	20	5-8	10		
5	10	2-5	5		
2	5	<2	5		

Stormceptor[®] EF Sizing Report


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m ²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	9.6	9.6	2.02	121.0	17.0	70	6.7	6.7
1.00	20.7	30.3	4.04	243.0	33.0	70	14.6	21.3
2.00	15.5	45.8	8.09	485.0	66.0	67	10.4	31.7
3.00	11.2	56.9	12.13	728.0	100.0	62	7.0	38.7
4.00	7.6	64.6	16.18	971.0	133.0	60	4.6	43.2
5.00	5.9	70.5	20.22	1213.0	166.0	57	3.4	46.7
6.00	4.4	74.9	24.27	1456.0	199.0	54	2.4	49.0
7.00	3.3	78.2	28.31	1699.0	233.0	53	1.7	50.8
8.00	2.5	80.7	32.36	1942.0	266.0	52	1.3	52.1
9.00	2.3	83.0	36.40	2184.0	299.0	51	1.2	53.3
10.00	2.5	85.6	40.45	2427.0	332.0	50	1.3	54.6
11.00	1.1	86.7	44.49	2670.0	366.0	49	0.6	55.1
12.00	1.1	87.8	48.54	2912.0	399.0	48	0.5	55.6
13.00	1.4	89.2	52.58	3155.0	432.0	48	0.6	56.3
14.00	0.9	90.1	56.63	3398.0	465.0	47	0.4	56.7
15.00	1.3	91.4	60.67	3640.0	499.0	47	0.6	57.3
16.00	1.0	92.4	64.72	3883.0	532.0	47	0.5	57.8
17.00	0.4	92.8	68.76	4126.0	565.0	46	0.2	58.0
18.00	1.2	94.0	72.81	4368.0	598.0	46	0.5	58.5
19.00	0.5	94.4	76.85	4611.0	632.0	46	0.2	58.8
20.00	0.6	95.1	80.90	4854.0	665.0	46	0.3	59.0
21.00	0.8	95.9	84.94	5097.0	698.0	46	0.4	59.4
22.00	0.4	96.3	88.99	5339.0	731.0	45	0.2	59.6
23.00	0.2	96.5	93.03	5582.0	765.0	45	0.1	59.7
24.00	0.2	96.7	97.08	5825.0	798.0	45	0.1	59.8
25.00	0.2	96.9	101.12	6067.0	831.0	45	0.1	59.9
30.00	1.6	98.4	121.35	7281.0	997.0	44	0.7	60.5
35.00	0.3	98.7	141.57	8494.0	1164.0	46	0.1	60.7
40.00	1.3	100.0	161.80	9708.0	1330.0	48	0.6	61.3
45.00	0.0	100.0	182.02	10921.0	1496.0	46	0.0	61.3
	-	-	Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	61 %

Climate Station ID: 6122847 Years of Rainfall Data: 20

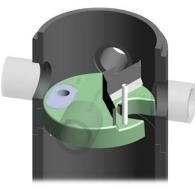
Stormceptor[®]

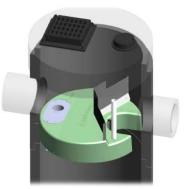
Stormceptor[®] EF Sizing Report

Stormceptor[®] EF Sizing Report

Maximum Pipe Diameter / Peak Conveyance											
Stormceptor EF / EFO	Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame	•	Max Out Diam	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.


DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor[®] EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor[®] EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

Stormceptor[®] EF Sizing Report

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

- 0° 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.
- 45° 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity												
Stormceptor EF / EFO	Moo Diam		Depth Pipe In Sump		Oil Vo	lume	Recommended Sediment Maintenance Depth *		Maxiı Sediment ^v	-	Maxin Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

Pollutant Capacity

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To Regulator, Specifying & Design Engineer Regulator, Specifying & Design Engineer Site Owner		
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance			
Third-party verified light liquid capture and retention for EFO version	Proven performance for fuel/oil hotspot locations			
Functions as bend, junction or inlet structure	Design <mark>f</mark> lexibility	Specifying & Design Engineer		
Minimal drop between inlet and outlet	Site installation ease	Contractor		
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner		

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Stormceptor[®]EF Sizing Report

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormceptor® EF											
TSS % REMOVAL	SLR (L/min/m²)	TSS % REMOVAL	SLR (L/min/m²)	TSS % REMOVAL	SLR (L/min/m²)	TSS % REMOVAL					
70	660	46	1320	48	1980	35					
70	690	46	1350	48	2010	34					
67	720	45	1380	49	2040	34					
63	750	45	1410	49	2070	33					
61	780	45	1440	48	2100	33					
58	810	45	1470	47	2130	32					
56	840	45	1500	46	2160	32					
54	870	45	1530	45	2190	31					
53	900	45	1560	44	2220	31					
52	930	44	1590	43	2250	30					
51	960	44	1620	42	2280	30					
50	990	44	1650	42	2310	30					
49	1020	44	1680	41	2340	29					
48	1050	45	1710	40	2370	29					
48	1080	45	1740	39	2400	29					
48	1110	45	1770	39	2430	28					
47	1140	46	1800	38	2460	28					
47	1170	46	1830	37	2490	28					
47	1200	47	1860	37	2520	27					
46	1230	47	1890	36	2550	27					
46	1260	47	1920	36	2580	27					
46	1290	48	1950	35	2600	26					
	TSS % 70 70 67 63 61 58 56 54 53 52 51 50 49 48 47 47 47 46 46	TSS % REMOVALSLR (L/min/m²)70660706906772063750637506178058810568405487053900529305196050990481050481080481110471140471200461230	Stormcey TSS % REMOVAL SLR (L/min/m²) TSS % REMOVAL 70 660 46 70 690 46 70 690 46 67 720 45 63 750 45 61 780 45 56 840 45 56 840 45 56 840 45 57 930 44 51 960 44 52 930 44 50 990 44 45 950 45 48 1050 45 48 1050 45 48 1110 45 47 1140 46 47 1200 47 46 1230 47	Stormcept" EFTSS % REMOVALSLR (L/min/m²)TSS % REMOVALSLR (L/min/m²)7066046132070690461350677204513806375045141061780451440588104515005487045150054870451500539004415905196044162052930441650541020441680551020441680611020441680481050451710481050451700471140461800471170461830461230471860	Stormceptore EFTSS % REMOVALSLR (L/min/m²)TSS % REMOVALSLR (L/min/m²)TSS % REMOVAL70660461320487069046135048677204513804963750451410496178045144048588104514404858810451500465487045150046548704515004455900441500425196044162042509904416504249102044168041481050451710404810804517403947114046183037471200471860374612304718903646123047189036	Stormceptor® EFTSS % REMOVALSLR (L/min/m2)SLS % REMOVALSLR (L/min/m2)SLS % (L/min/m2)70660463204819807066046350482010676904635048201067720451380492040637504514104920706478045144048210065840451540462160568404515004621605790045156044222053900451560442220519604415904325505196044162042231054190045171040237048105045171040237048105045174038240047110045170382400471101461800382400471200471860372500461200471800362500461200471800362500					

Stormceptor[®] EF Sizing Report

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The **minimum** sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:

6 ft (1829 mm) Diameter OGS Units: 8 ft (2438 mm) Diameter OGS Units: 10 ft (3048 mm) Diameter OGS Units: 12 ft (3657 mm) Diameter OGS Units: $\begin{array}{l} 1.19 \text{ m}^3 \text{ sediment } / \ 265 \text{ L oil} \\ 3.48 \text{ m}^3 \text{ sediment } / \ 609 \text{ L oil} \\ 8.78 \text{ m}^3 \text{ sediment } / \ 1,071 \text{ L oil} \\ 17.78 \text{ m}^3 \text{ sediment } / \ 1,673 \text{ L oil} \\ 31.23 \text{ m}^3 \text{ sediment } / \ 2,476 \text{ L oil} \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

Stormceptor* EF Sizing Report

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 L/min/m² shall be assumed to be identical to the sediment removal efficiency at 40 L/min/m². No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 L/min/m².

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

