

311 VICTORIA STREET NORTH KITCHENER / ONTARIO / N2H 5E1 519-742-8979

October 30, 2023 File No.: 1417

Bruce-Grey Catholic District School Board 799 16th Avenue Hanover, Ontario N4N 3A1

Attention: Chad Aitken

Re: Preliminary Geotechnical Investigation Proposed New High School 28th Avenue East, Owen Sound, Ontario

CHUNG & VANDER DOELEN ENGINEERING LTD. (CVD) was retained by Bruce-Grey Catholic District School Board to conduct a preliminary geotechnical investigation at the above-noted site.

It is understood that this preliminary geotechnical investigation is for the purpose of land purchase agreement. Additional boreholes for a supplementary investigation will be required when the building location and design are being finalized.

The site is proposed to be developed with a new 2-storey high school without basement and is proposed to be constructed in the centre of the site, as shown on the attached Drawing No. 1. Asphalt-paved driveway and parking areas will be located to the east of the proposed school, fronting 28th Avenue East. A turf athletic field is proposed in the lower western half of the site.

The site currently exists as a vacant field, off 28^{th} Avenue East. The site is $300\pm$ m south of the intersection with 16^{th} Street East. The site increases in elevation gradually from east to west, with a grade differential of $3\pm$ m from the higher central portion of the site to the eastern portion of the site, towards 28^{th} Avenue East. The centre of the site is relatively flat, followed by a steep decline westward to the west of the site.

FIELD WORK AND LABORATORY TESTING

To investigate the subsurface conditions at the site, nine (9) boreholes were advanced to depths between 4.70 and 7.85 m below existing grade on September 7 and 8, 2023. The borehole locations are indicated on the Borehole Location Plan, Drawing No. 1.

The field work was carried out under the supervision of a member of our engineering team, who logged the subsurface conditions encountered at the boreholes, effected the subsurface sampling, and monitored the groundwater conditions. The boreholes were advanced using a track-mounted drilling rig, supplied, and operated by a specialized contractor. The drill rig was equipped with continuous flight augers and standard soil sampling equipment.

Standard penetration tests (SPTs) in accordance with ASTM Specification D1586 were carried out at frequent intervals of depth, and the results are shown on the Borehole Logs as Penetration Resistance or "N"-values. The undrained shear strength of the cohesive soil deposits was determined on the slightly disturbed SPT samples using a field pocket penetrometer. The compactness condition and consistency of the soil strata has been inferred from these test results.

Groundwater conditions were monitored during advancement of the borehole augering and immediately following the withdrawal of the drilling augers at each borehole location.

The borehole locations, temporary benchmark, and associated ground surface elevations were surveyed by CVD for the purpose of this report using a Network RTK Global Navigation Satellite System (GNSS) Receiver. The survey data was collected using The UTM Zone 17N Projection, NAD83(CSRS)v7-2010 datum and Canada Geoid Model HT2_2010v70 (CGVD28).

The referenced temporary benchmark (TBM) is described below:

- TBM: Catch basin in the sidewalk, intersection of 16th Street East and 28th Avenue East, as shown on Drawing No. 1
- Elevation: 237.26 m (Geodetic)

Four (4) soil samples were submitted to AGAT Laboratories of Mississauga, Ontario for analysis of metals and inorganics, benzene, toluene, ethylbenzene, and xylene (BTEX), and Petroleum Hydrocarbons (PHCs F1-F4). The chemical testing was conducted to provide a preliminary assessment of the environmental quality of potential excess soil which may be generated and removed off-site during construction.

FINDINGS

The nine (9) boreholes contacted between 0.15 and 0.23 m of topsoil at the ground surface. Underlying the topsoil were typically loose to very dense sandy silt till to sand and silt till deposits to the borehole termination depths between 4.70 to 7.85 m below existing grade (corresponding to elevations between 228.3± and 233.7± m). Locally at Borehole 4, a clayey silt till deposit was encountered below the topsoil to a depth of 5.80 m below existing grade (corresponding to an elevation of $232.0\pm$ m), followed by a saturated sand deposit to a depth of 6.55 m below existing grade (corresponding to an elevation of $231.2\pm$ m).

Groundwater levels were observed drilling and immediately following the withdrawal of the drilling augers. Groundwater depths were measured between $2.6\pm$ and $5.4\pm$ m below existing grades, corresponding to elevations between $233.3\pm$ to $235.9\pm$ m.

DISCUSSION and RECOMMENDATIONS

The results of the widely spaced boreholes indicate that the compact to very dense sandy silt till/sand and silt till, and stiff to hard clayey silt till are suitable to support the proposed 2-storey high school building. Conventional strip and spread footing foundations can be used to support the proposed structure. A Geotechnical Reaction at SLS of 150 to 200 kPa can be used depending on the depth/elevation of the footings.

The following table summarizes the highest founding level and elevation for the footing at each borehole location:

Borehole No.	Existing Ground Elevation (m)	Highest Founding Depth (m)	Highest Founding Elevation (m)										
150 kPa @ SLS	150 kPa @ SLS, 250 kPa @ ULS												
1	240.00	0.60	239.40										
2	238.74	1.34	237.40										
3	240.10	0.70	239.40										
4	237.79	0.79	237.00										
5	240.22	0.62	239.60										
200 kPa @ SLS	5, 300 kPa @ ULS												
1	240.00	0.90	239.10										
2	238.74	1.54	237.20										
3	240.10	2.10	238.00										
4	237.79	2.49	235.30										
5	240.22	0.92	239.30										

Due to significant variations in ground surface elevation across the site, site grading will be required. It is recommended to construct engineered fill in areas to be raised and to remedy existing poor bearing-support soils in order to suitably support the future building and pavement areas. Imported sand and gravel and/or approved on-site inorganic till soils can be used to construct the engineered fill under controlled and supervised conditions.

Excavations will be made in the moist native sandy silt till/sand and silt till, and clayey silt till, and can be carried out with conventional equipment and 1H :1V side slopes. The groundwater table is located at depths between 2.6± and 5.4± m below existing grade as of September 2023 as recorded at completion of sampling, corresponding to elevations varying between 233.3± to 235.9± m. Therefore, dewatering will not be required and local control of seepage/surface water ingress using conventional sump pumping technique will be feasible for foundation construction.

The floor slab for the proposed school can be constructed as conventional slab-on-grade on the on the native compact to very dense till deposits or engineered fill constructed.

In accordance with The Ontario Building Code 2012 (OBC), the proposed building structures should be designed to resist earthquake load and effects as per OBC Subsection 4.1.8. Based on the anticipated condition of the engineered fill materials, the soil condition encountered at the boreholes and within 30 m depths, the site can be classified as a Site Class C as per OBC Table 4.1.8.4.A (Page B4-16).

Infiltration Rate of Native Soil Deposits

Based on the laboratory gradational results and our experience, the coefficient of permeability and infiltration rate of the predominant deposits encountered throughout the site are estimated and provided in the following table:

Material	Permeability (K) (cm/s)	Infiltration Rate (mm/hr)
Sand/Silt Till (Enclosures 10 and 11)	1 x 10 ⁻⁵	4
Clayey Silt Till	1 x 10 ⁻⁶	1

Based on the above-cited infiltration rates, the site soils are not considered suitable for installation of infiltration gallery for storm water management.

Four (4) soil samples were submitted to AGAT Laboratories of Mississauga, Ontario for analysis of metals and inorganics, benzene, toluene, ethylbenzene, and xylene (BTEX), and Petroleum Hydrocarbons (PHCs F1-F4). The chemical testing was conducted to provide a preliminary assessment of the environmental quality of potential excess soil which may be generated and removed off-site during construction.

The Soil, Ground Water and Sediment Standards for Use Under the New Soil Rules and Excess Soil Quality Standards established in accordance with the O. Reg. 406/19 as amended were consulted in the assessment of the soil at the project site.

The analytical results for soils were compared to the following O. Reg. 406/19 regulatory standards:

October 30, 2023 File No.: 1417 Page 6

- Table 1 (Full Depth Background Site Condition Standards) for <u>Residential/Parkland/Institutional/</u> <u>Industrial/Commercial/Community</u> Property Use (Table 1 RPIICC ESQS)
- Table 2.1 (Full Depth Generic Excess Soil Quality Standards in a Potable Ground Water Condition) for <u>Residential/Parkland/Institutional</u> Property Use (Table 2.1 RPI ESQS)
- Table 2.1 (Full Depth Excess Soil Quality Standards in a Potable Ground Water Condition) for Industrial/Commercial/Community Property Use (Table 2.1 ICC ESQS)

The measured concentrations met Table 1 and 2.1 RPIICC ESQS.

CLOSURE

The Limitations of Report, as quoted in Appendix A, is an integral part of this report.

We trust that the information presented in this report is complete within our terms of reference. If there are any further questions concerning this report, please do not hesitate to contact our office.

Yours truly, CHUNG & VANDER DOELEN ENGINEERING LTD.

Drake Oldfield Geotechnical Engineering Intern

OFESSION CHUNG 8345506 Oct. 30, 2023 POVINCE OF ONT P.Eng. Chung, M.Eng **Principal Engineer**

APPENDIX A

LIMITATIONS OF REPORT

APPENDIX "A"

LIMITATIONS OF REPORT

The conclusions and recommendations given in this report are based on information determined at the testhole locations. Subsurface and groundwater conditions between and beyond the testholes may differ from those encountered at the testhole locations, and conditions may become apparent during construction which could not be detected or anticipated at the time of the site investigation. It is recommended practice that the Soils Engineer be retained during construction to confirm that the subsurface conditions throughout the site do not deviate materially from those encountered in the testholes.

The comments made in this report on potential construction problems and possible methods are intended only for the guidance of the designer. The number of testholes and their respective depths may not be sufficient to determine all the factors that may affect construction methods and costs. For example, the thickness of surficial topsoil or fill layers may vary markedly and unpredictably. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusion as to how the subsurface conditions may affect their work.

The benchmark and elevations mentioned in this report were obtained strictly for use in the geotechnical design of the project and by this office only, and should not be used by any other parties for any other purposes.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. CHUNG & VANDER DOELEN ENGINEERING LIMITED accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The design recommendations given in this report are applicable only to the project described in the text and then only if constructed substantially in accordance with the details stated in this report. Since all details of the design may not be known, we recommend that we be retained during the final design stage to verify that the design is consistent with our recommendations, and that assumptions made in our analysis are valid.

This report does not reflect the environmental issues or concerns unless otherwise stated in the report.

APPENDIX B

SOIL CHEMISTRY RESULTS (AGAT Laboratories)

CLIENT NAME: CHUNG AND VANDER DOELEN 311 VICTORIA STREET NORTH KITCHENER, ON N2H5E1 (519) 742-8979 ATTENTION TO: Nandou Zhou PROJECT: 1417 AGAT WORK ORDER: 23T068617 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor DATE REPORTED: Sep 20, 2023 PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Meaters Frains Aprillional Laboratory Appariation (M/FALA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 10

ATTENTION TO: Nandou Zhou

SAMPLED BY:DO

AGAT WORK ORDER: 23T068617 PROJECT: 1417

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: CHUNG AND VANDER DOELEN

SAMPLING SITE:28th Avenue East, Owen Sound, Ontario

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-09-13

DATE RECEIVED: 2023-09-13								I	DATE REPORTED	: 2023-09-20
Parameter	Unit	G / S: A	G / S: B	SA	ESCRIPTION: AMPLE TYPE: TE SAMPLED: RDL	BH 2 - SA 2 Soil 2023-09-07 5284593	BH 3 - SA 1 Soil 2023-09-07 5284603	BH 4 - SA 1 Soil 2023-09-08 5284604	BH 6 - SA 2 Soil 2023-09-08 5284605	
Antimony	µg/g	1.3	40	7.5	0.8	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""><td></td></a]<></td></a]<>	<0.8[<a]< td=""><td></td></a]<>	
Arsenic	μg/g	1.5	18	18	1	5[<a]< td=""><td>5[<a]< td=""><td><0.0[<a] 5[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<></a] </td></a]<></td></a]<>	5[<a]< td=""><td><0.0[<a] 5[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<></a] </td></a]<>	<0.0[<a] 5[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<></a] 	5[<a]< td=""><td></td></a]<>	
Barium	μg/g	220	670	390	2.0	20.5[<a]< td=""><td>27.7[<a]< td=""><td>73.7[<a]< td=""><td>22.2[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	27.7[<a]< td=""><td>73.7[<a]< td=""><td>22.2[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	73.7[<a]< td=""><td>22.2[<a]< td=""><td></td></a]<></td></a]<>	22.2[<a]< td=""><td></td></a]<>	
Beryllium	μg/g	2.5	8	4	0.5	<0.5[<a]< td=""><td><0.5[<a]< td=""><td>0.9[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td>0.9[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	0.9[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<>	<0.5[<a]< td=""><td></td></a]<>	
Boron	μg/g	36	120	120	5	11[<a]< td=""><td>10[<a]< td=""><td>20[<a]< td=""><td>12[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>20[<a]< td=""><td>12[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>12[<a]< td=""><td></td></a]<></td></a]<>	12[<a]< td=""><td></td></a]<>	
Boron (Hot Water Soluble)	μg/g	NA	2	1.5	0.10	<0.10[<c]< td=""><td><0.10[<c]< td=""><td>0.16[<c]< td=""><td><0.10[<c]< td=""><td></td></c]<></td></c]<></td></c]<></td></c]<>	<0.10[<c]< td=""><td>0.16[<c]< td=""><td><0.10[<c]< td=""><td></td></c]<></td></c]<></td></c]<>	0.16[<c]< td=""><td><0.10[<c]< td=""><td></td></c]<></td></c]<>	<0.10[<c]< td=""><td></td></c]<>	
Cadmium	μg/g	1.2	1.9	1.2	0.5	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<>	<0.5[<a]< td=""><td></td></a]<>	
Chromium	μg/g	70	160	160	5	10[<a]< td=""><td>11[<a]< td=""><td>26[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>26[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	26[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<>	9[<a]< td=""><td></td></a]<>	
Cobalt	μg/g	21	80	22	0.8	6.7[<a]< td=""><td>7.4[<a]< td=""><td>12.6[<a]< td=""><td>6.3[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	7.4[<a]< td=""><td>12.6[<a]< td=""><td>6.3[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	12.6[<a]< td=""><td>6.3[<a]< td=""><td></td></a]<></td></a]<>	6.3[<a]< td=""><td></td></a]<>	
Copper	µg/g	92	230	140	1.0	30.7[<a]< td=""><td>29.8[<a]< td=""><td>21.8[<a]< td=""><td>29.7[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	29.8[<a]< td=""><td>21.8[<a]< td=""><td>29.7[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	21.8[<a]< td=""><td>29.7[<a]< td=""><td></td></a]<></td></a]<>	29.7[<a]< td=""><td></td></a]<>	
Lead	μg/g	120	120	120	1	5[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<>	4[<a]< td=""><td></td></a]<>	
Molybdenum	µg/g	2	40	6.9	0.5	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<>	<0.5[<a]< td=""><td></td></a]<>	
Nickel	μg/g	82	270	100	1	13[<a]< td=""><td>14[<a]< td=""><td>27[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>27[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	27[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<>	13[<a]< td=""><td></td></a]<>	
Selenium	µg/g	1.5	5.5	2.4	0.8	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""><td></td></a]<></td></a]<>	<0.8[<a]< td=""><td></td></a]<>	
Silver	μg/g	0.5	40	20	0.5	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<>	<0.5[<a]< td=""><td></td></a]<>	
Thallium	hð\ð	1	3.3	1	0.5	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td></td></a]<></td></a]<>	<0.5[<a]< td=""><td></td></a]<>	
Uranium	µg/g	2.5	33	23	0.50	<0.50[<a]< td=""><td><0.50[<a]< td=""><td>0.63[<a]< td=""><td><0.50[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td>0.63[<a]< td=""><td><0.50[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	0.63[<a]< td=""><td><0.50[<a]< td=""><td></td></a]<></td></a]<>	<0.50[<a]< td=""><td></td></a]<>	
Vanadium	µg/g	86	86	86	2.0	18.1[<a]< td=""><td>18.6[<a]< td=""><td>35.1[<a]< td=""><td>18.2[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	18.6[<a]< td=""><td>35.1[<a]< td=""><td>18.2[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	35.1[<a]< td=""><td>18.2[<a]< td=""><td></td></a]<></td></a]<>	18.2[<a]< td=""><td></td></a]<>	
Zinc	hð/ð	290	340	340	5	28[<a]< td=""><td>29[<a]< td=""><td>51[<a]< td=""><td>24[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	29[<a]< td=""><td>51[<a]< td=""><td>24[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	51[<a]< td=""><td>24[<a]< td=""><td></td></a]<></td></a]<>	24[<a]< td=""><td></td></a]<>	
Chromium, Hexavalent	hð/ð	0.66	8	8	0.2	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td></td></a]<></td></a]<>	<0.2[<a]< td=""><td></td></a]<>	
Cyanide, WAD	hð\ð	0.051	0.051	0.051	0.040	<0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.040[<a]< td=""><td><0.040[<a]< td=""><td></td></a]<></td></a]<>	<0.040[<a]< td=""><td></td></a]<>	
Mercury	µg/g	0.27	0.27	0.27	0.10	<0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.10[<a]< td=""><td><0.10[<a]< td=""><td></td></a]<></td></a]<>	<0.10[<a]< td=""><td></td></a]<>	
Electrical Conductivity (2:1)	mS/cm	0.57	1.4	0.7	0.005	0.111[<a]< td=""><td>0.143[<a]< td=""><td>0.139[<a]< td=""><td>0.120[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	0.143[<a]< td=""><td>0.139[<a]< td=""><td>0.120[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	0.139[<a]< td=""><td>0.120[<a]< td=""><td></td></a]<></td></a]<>	0.120[<a]< td=""><td></td></a]<>	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	2.4	12	5	N/A	0.418[<a]< td=""><td>0.161[<a]< td=""><td>0.120[<a]< td=""><td>0.129[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	0.161[<a]< td=""><td>0.120[<a]< td=""><td>0.129[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	0.120[<a]< td=""><td>0.129[<a]< td=""><td></td></a]<></td></a]<>	0.129[<a]< td=""><td></td></a]<>	
pH, 2:1 CaCl2 Extraction	pH Units				NA	7.35	7.20	7.21	7.35	

Certified By:

AGAT WORK ORDER: 23T068617 PROJECT: 1417

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: CHUNG AND VANDER DOELEN

SAMPLING SITE:28th Avenue East, Owen Sound, Ontario

ATTENTION TO: Nandou Zhou

SAMPLED BY:DO

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-09-13

DATE REPORTED: 2023-09-20

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use, B Refers to O. Reg. 406/19 TABLE 2.1: Full Depth Potable Ground Water Condition Volume Independent - Com/Ind, C Refers to O. Reg. 406/19 TABLE 2.1: Full Depth Potable Ground Water Condition Volume Independent - RP

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5284593-5284605 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23T068617 PROJECT: 1417 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: CHUNG AND VANDER DOELEN

SAMPLING SITE:28th Avenue East, Owen Sound, Ontario

ATTENTION TO: Nandou Zhou

SAMPLED BY:DO

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE	RECEIVED: 2023-09-13
DAIL	

								_		
				SAMPLE	DESCRIPTION:	BH 2 - SA 2	BH 3 - SA 1	BH 4 - SA 1	BH 6 - SA 2	
				5	SAMPLE TYPE:	Soil	Soil	Soil	Soil	
				DA	ATE SAMPLED:	2023-09-07	2023-09-07	2023-09-08	2023-09-08	
Parameter	Unit	G / S: A	G / S: B	G / S: C	RDL	5284593	5284603	5284604	5284605	
Benzene	µg/g	0.02	0.02	0.02	0.02	<0.02[<a]< td=""><td><0.02[<a]< td=""><td><0.02[<a]< td=""><td><0.02[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.02[<a]< td=""><td><0.02[<a]< td=""><td><0.02[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.02[<a]< td=""><td><0.02[<a]< td=""><td></td></a]<></td></a]<>	<0.02[<a]< td=""><td></td></a]<>	
Toluene	µg/g	0.2	0.2	0.2	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Ethylbenzene	µg/g	0.05	0.05		0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
m & p-Xylene	µg/g				0.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	µg/g				0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	µg/g	0.05	0.091	0.091	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
F1 (C6 - C10)	µg/g	25			5	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F1 (C6 to C10) minus BTEX	µg/g	25	25	25	5	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F2 (C10 to C16)	µg/g	10	26	10	10	<10[<a]< td=""><td><10[<a]< td=""><td><10[<a]< td=""><td><10[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<10[<a]< td=""><td><10[<a]< td=""><td><10[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<10[<a]< td=""><td><10[<a]< td=""><td></td></a]<></td></a]<>	<10[<a]< td=""><td></td></a]<>	
F3 (C16 to C34)	µg/g	240	240	240	50	<50[<a]< td=""><td><50[<a]< td=""><td><50[<a]< td=""><td><50[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<50[<a]< td=""><td><50[<a]< td=""><td><50[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<50[<a]< td=""><td><50[<a]< td=""><td></td></a]<></td></a]<>	<50[<a]< td=""><td></td></a]<>	
F4 (C34 to C50)	µg/g	120	3300	2800	50	<50[<a]< td=""><td><50[<a]< td=""><td><50[<a]< td=""><td><50[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<50[<a]< td=""><td><50[<a]< td=""><td><50[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<50[<a]< td=""><td><50[<a]< td=""><td></td></a]<></td></a]<>	<50[<a]< td=""><td></td></a]<>	
Gravimetric Heavy Hydrocarbons	µg/g	120			50	NA[B]	NA[B]	NA[B]	NA[B]	
Moisture Content	%				0.1	13.4	19.6	15.1	11.9	
Surrogate	Unit		Acceptal	ble Limits						
Toluene-d8	% Recovery		60-	140		70	75	71	73	
Terphenyl	%		60-	140		68	90	72	80	

teus

DATE REPORTED: 2023-09-20

AGAT WORK ORDER: 23T068617 PROJECT: 1417

CLIENT NAME: CHUNG AND VANDER DOELEN

DATE RECEIVED: 2023-09-13

SAMPLING SITE:28th Avenue East, Owen Sound, Ontario

ATTENTION TO: Nandou Zhou

SAMPLED BY:DO

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE REPORTED: 2023-09-20

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

RDL - Reported Detection Limit: G / S - Guideline / Standard: A Refers to Table 1: Full Depth Background Site Condition Standards - Soil -Comments: Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use, B Refers to O. Reg. 406/19 TABLE 2.1: Full Depth Potable Ground Water Condition Volume Independent - Com/Ind, C Refers to O. Reg. 406/19 TABLE 2.1: Full Depth Potable Ground Water Condition Volume Independent - RP Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 5284593-5284605 Results are based on sample dry weight. The C6-C10 fraction is calculated using Toluene response factor. Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX contribution. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. Fractions 1-4 are guantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: CHUNG AND VANDER DOELEN

PROJECT: 1417

SAMPLING SITE:28th Avenue East, Owen Sound, Ontario

AGAT WORK ORDER: 23T068617

ATTENTION TO: Nandou Zhou

SAMPLED BY:DO

Soil Analysis

				001		119513													
RPT Date: Sep 20, 2023			D	UPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK		MAT	RIX SPI	KE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		sured Limits		ured Limits		Recovery	Acceptabl Limits			Lin	ptable nits
		iu					value	Lower	Upper	-	Lower	Upper		Lower	Upper				
O. Reg. 153(511) - Metals & Inor	rganics (Soil)																		
Antimony	5284593 528	84593	<0.8	<0.8	NA	< 0.8	127%	70%	130%	103%	80%	120%	86%	70%	130%				
Arsenic	5284593 528	84593	5	5	0.0%	< 1	114%	70%	130%	104%	80%	120%	111%	70%	130%				
Barium	5284593 528	84593	20.5	21.0	2.4%	< 2.0	99%	70%	130%	104%	80%	120%	109%	70%	130%				
Beryllium	5284593 528	84593	<0.5	<0.5	NA	< 0.5	104%	70%	130%	105%	80%	120%	110%	70%	130%				
Boron	5284593 528	84593	11	11	NA	< 5	81%	70%	130%	110%	80%	120%	102%	70%	130%				
Boron (Hot Water Soluble)	5284593 528	84593	<0.10	<0.10	NA	< 0.10	93%	60%	140%	107%	70%	130%	106%	60%	140%				
Cadmium	5284593 528	84593	<0.5	<0.5	NA	< 0.5	114%	70%	130%	105%	80%	120%	108%	70%	130%				
Chromium	5284593 528	84593	10	10	NA	< 5	101%	70%	130%	91%	80%	120%	92%	70%	130%				
Cobalt	5284593 528	84593	6.7	7.0	4.4%	< 0.8	104%	70%	130%	102%	80%	120%	106%	70%	130%				
Copper	5284593 528	84593	30.7	32.2	4.8%	< 1.0	103%	70%	130%	102%	80%	120%	92%	70%	130%				
Lead	5284593 528	84593	5	5	0.0%	< 1	117%	70%	130%	96%	80%	120%	99%	70%	130%				
Molybdenum	5284593 528	84593	<0.5	<0.5	NA	< 0.5	112%	70%	130%	106%	80%	120%	115%	70%	130%				
Nickel	5284593 528	84593	13	14	7.4%	< 1	100%	70%	130%	100%	80%	120%	102%	70%	130%				
Selenium	5284593 528	84593	<0.8	<0.8	NA	< 0.8	128%	70%	130%	106%	80%	120%	110%	70%	130%				
Silver	5284593 528	84593	<0.5	<0.5	NA	< 0.5	104%	70%	130%	100%	80%	120%	98%	70%	130%				
Thallium	5284593 528	84593	<0.5	<0.5	NA	< 0.5	110%	70%	130%	117%	80%	120%	121%	70%	130%				
Uranium	5284593 528	84593	<0.50	<0.50	NA	< 0.50	112%	70%	130%	94%	80%	120%	109%	70%	130%				
Vanadium	5284593 528	84593	18.1	18.2	0.6%	< 2.0	113%	70%	130%	107%	80%	120%	113%	70%	130%				
Zinc	5284593 528	84593	28	29	3.5%	< 5	111%	70%	130%	111%	80%	120%	120%	70%	130%				
Chromium, Hexavalent	5284604 528	84604	<0.2	<0.2	NA	< 0.2	91%	70%	130%	95%	80%	120%	91%	70%	130%				
Cyanide, WAD	5286708		<0.040	<0.040	NA	< 0.040	105%	70%	130%	103%	80%	120%	89%	70%	130%				
Mercury	5284593 528	84593	<0.10	<0.10	NA	< 0.10	119%	70%	130%	103%	80%	120%	106%	70%	130%				
Electrical Conductivity (2:1)	5284593 528	84593	0.111	0.105	5.6%	< 0.005	102%	80%	120%										
Sodium Adsorption Ratio (2:1) (Calc.)	5284518		1.83	1.65	10.3%	NA													
pH, 2:1 CaCl2 Extraction	5284564		6.16	6.21	0.8%	NA	102%	80%	120%										

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may

not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 6 of 10

60% 140%

Quality Assurance

CLIENT NAME: CHUNG AND VANDER DOELEN

PROJECT: 1417

F4 (C34 to C50)

SAMPLING SITE:28th Avenue East, Owen Sound, Ontario

AGAT WORK ORDER: 23T068617

ATTENTION TO: Nandou Zhou

5284190

< 50

SAMPLED BY:DO

			Trac	e Or	ganio	cs Ar	nalysi	is									
RPT Date: Sep 20, 2023				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lie	eptable mits		
		ld							Value	Lower Uppe	Upper		Lower Upper	Upper			Upper
O. Reg. 153(511) - PHCs F1 -	F4 (Soil)																
Benzene	5283027		<0.02	<0.02	NA	< 0.02	75%	60%	140%	88%	60%	140%	73%	60%	140%		
Toluene	5283027		<0.05	<0.05	NA	< 0.05	79%	60%	140%	86%	60%	140%	81%	60%	140%		
Ethylbenzene	5283027		<0.05	<0.05	NA	< 0.05	75%	60%	140%	98%	60%	140%	110%	60%	140%		
m & p-Xylene	5283027		<0.05	<0.05	NA	< 0.05	80%	60%	140%	99%	60%	140%	75%	60%	140%		
o-Xylene	5283027		<0.05	<0.05	NA	< 0.05	85%	60%	140%	71%	60%	140%	78%	60%	140%		
F1 (C6 - C10)	5283027		<5	<5	NA	< 5	90%	60%	140%	100%	60%	140%	98%	60%	140%		
F2 (C10 to C16)	5284190		376	297	23.5%	< 10	118%	60%	140%	117%	60%	140%	124%	60%	140%		
F3 (C16 to C34)	5284190		387	330	15.9%	< 50	129%	60%	140%	120%	60%	140%	129%	60%	140%		

NA Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

< 50

72%

< 50

60% 140%

128%

60%

140%

128%

Certified By:

wg

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 7 of 10

Method Summary

CLIENT NAME: CHUNG AND VANDER DOELEN

PROJECT: 1417

AGAT WORK ORDER: 23T068617

TTENTION TO: Nandou Zhou

ATTENTION TO: Nandou Zho
SAMPLED BY:DO

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Soil Analysis						
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES			
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER			
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS			
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS			
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE			
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES			
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE			

Method Summary

CLIENT NAME: CHUNG AND VANDER DOELEN

PROJECT: 1417

AGAT WORK ORDER: 23T068617 ATTENTION TO: Nandou Zhou

SAMPLING SITE:28th Avenue East, Owen Sound, Ontario

SAMPLED BY:DO

	,								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis	I	I	1						
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID						
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID						
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS						
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE						
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE						
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						

Chain of C	Carlos Ca		Labo Drinking Water samp					Ph: 905-71	ississa L2,510 W	nuga, ()O Fax vebear	th.agai	L4Z : 712.51 (labs.c	.Y2 22	Wo Co	abora ork Orde oler Qua	antity:		23	ne	08k	1 - 1	.8
Report Inform	nation: Chung & Vander Doelen En	gineering Ltd.			Regu (Please che	latory Requ	irements:								istody S otes:	eal Inta	cti	Yes	e	□No		□n/A
Contact:	Nandou Zhao				Regulation 153/04 C Excess Soils R406 Sewer Use									_	10	\sim	_	_				
Address:	311 Victoria Street North					T1 RPIICC				Sanitar	/ 🗆 🛙	Storm		Tu	rnaro	und T	īme	(TAT)	Requ	uired:		
	Kitchener, ON, N2H 5E1					Indicate One d/Com	Table T2.1 I	One	2	Regi	on	-		Re	gular '	TAT		Z 51	to 7 Rus	iness Dr	ave	
Phone: Reports to be sent to:	Fax:			Com			558 [Dipectives (PWQ0)			Regular IAI 25 to 7 Business Days Rush TAT (Rush Surcharges Apply)											
1. Email:	nandou,zhao@cvdengineerin	-			Soil Text □Co	UTE (Check One) arse	ССМЕ	[🗌 Otł	ner					3 E Da	Busines: vs	s	$\square \frac{2}{Da}$	Busines: ays	° E	Day	Business
2. Email:	drake.oldfield@cvdengineeri	ng.com			□ oo					Indica	te One					,	Require		-	arges Ma):
Project Inform Project: Site Location: Sampled By:	nation: 1417 28th Avenue East, Owen Sou DO	ınd, Ontario			Reco	his submissic ord of Site Co Yes		Cer	r tific	ate o	_			0. Re	For 'Sar	T is excl	lusive	of week	kends an	tion for r nd statut ntact you	ory holic	СРМ
AGAT Quote #: Invoice Inforr Company: Contact: Address: Email:	Picase note: If quotation number is no nation:		9e billed full price for analys	1	B E GW G O C P F S S SD S	le Matrix Leg Biota Ground Water Dil Paint Soil Sediment Gurface Water	gend	Field Fittered - Metals, Hg, CrVI, DOC	Metals & Inorganics	Hg, 🗆 HWSB	PHCs if required © Yes □ No			Landfill Disposal Characterization TCLP:		e.	EC/SAR					Potentially Hazardous or High Concentration (Y/N)
Samp	le Identification	Date Sampled			ample Natrix		ments/ nstructions	Y/N	Metals	Metals	BTEX, F1-F4 Analyze F4G	PAHs	VOC PCBs	andfill	Excess	Excess DH, ICF	Salt - E					otentia
BH 2 - SA 2		Sept 7/23	AM PM 3	S		opeoidi	nourono															
BH 3 - SA 1		Sept 7/23	AM PM 3	S											-							
BH 4 - SA 1		Sept 8/23	AM PM 3	S				-		-						-		_	-			
BH 6 - SA 2		Sept 8/23	AM PM 3	S				-		-									-			
DITO SAL		5cpt 0/25	AM	0				-		-			-		-	1	-	-				
			AM						-	-				-	-			-	-			
			PM AM PM						-	-		-	-	-	-				-			_
									-				-			-			_			_
			AM PM					_	_	L	11.		_		-							_
			AM PM								-			1.0	-	1						A
			AM PM															a				
			AM PM								- 4					/			á			
Samples Refinquished By (Pri Drake Oldfield Samples Refinquished By (Pri			Date Sept 13/23	Time 12:00pt Time		Samples Received by (P	rint Name and Sign)	-					Date Sey	+ 13	3 Time	15			Darfe		of_1	
Samples Relinquished By (Pri	nt Name and Sign)		Duta	Time		Samples Received By (P	rint Name and Sign)			_	_		Date		Time				Page _	0	' <u></u>	- 11
							the end of the								1			N ^D :				

Donated ID: DW-78 1511 001

APPENDIX C

COMPARISON OF THE SOIL CHEMISTRY RESULTS TO THE APPLICABLE REGULATORY CRITERIA

ANALYTICAL RESULTS FOR SOIL

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, December 17, 2020 (O.Reg. 406/19)

		Table 1 Residential/ Parkland/ Institutional/ Industrial/ Commencial/ Community Property Use Standard	Table 2.1 Residential/ Parkland/ Institutional Property Use Standard	Table 2.1 Industrial/ Commercial/ Community Property Use Standard	BH 2 - SA 2	BH 3 - SA 1	BH 4 - SA 1	BH 6 - SA 2
	Conductivity (mS/cm)	0.57	0.7	1.4	0.11	0.14	0.14	0.12
	% Moisture (%)	-	-	-	12.4	15.2	18.5	12.8
	pH (pH units)	-	-	-	7.35	7.20	7.21	7.35
	Cyanide, Weak Acid Diss (ug/g)	0.051	0.051	0.051	<0.040	< 0.040	< 0.040	< 0.040
	SAR	2.4 1.3	5	12 40	0.42	0.16	0.12	0.13
	Antimony (Sb)		7.5		<0.8	<0.8	<0.8	<0.8
	Arsenic (As)	18	18	18	5	5	5	5
	Barium (Ba)	220	390	670	20.5	27.7	73.7	22.2
	Beryllium (Be)	2.5	4	8	<0.5	<0.5	0.90	<0.5
	Boron (B)	36	120	120	11	10	20	12
	Boron (B), Hot Water Ext. Available	-	1.5	2	<0.10	<0.10	0.16	<0.10
	Cadmium (Cd)	1.2	1.2	1.9	<0.5	<0.5	<0.5	<0.5
Metals &	Chromium (Cr)	70	160	160	10	11	26	9
Inorganics	Cobalt (Co)	21	22	80	6.7	7.4	12.6	6.3
	Copper (Cu)	92	140	230	30.7	29.8	21.8	29.7
	Lead (Pb)	120	120	120	5	6	8	4
	Mercury (Hg)	0.27	0.27	3.9	<0.10	<0.10		<0.10
	Molybdenum (Mo)	2	2 6.9	40	<0.5	<0.5		<0.5
	Nickel (Ni)	82	100	270	13	14	27	13
	Selenium (Se)	1.5	2.4	5.5	<0.8	<0.8	<0.8	<0.8
	Silver (Ag)	0.5	20	40	<0.5	<0.5	<0.5 <0.5 14 27 <0.8	<0.5
	Thallium (TI)	1	1	3.3	<0.5	<0.5	<0.5	<0.5
	Uranium (U)	2.5	23	33	<0.50	<0.50	0.63	<0.50
	Vanadium (V)	86	86	86	18.1	18.6	35.1	18.2
	Zinc (Zn)	290	340	340	28	29	51	24
	Chromium, Hexavalent	0.66	8	8	<0.2	<0.2	<0.2	<0.2
Petroleum	F1 (C6-C10)	25	55	55	<5	<5	<5	<5
Petroleum Hydrocarbons	F2 (C10-C16)	10	98	230	<10	<10	<10	<10
F1-F4	F3 (C16-C34)	240	300	1700	<50	<50	<50	<50
r 1-r 4	F4 (C34-C50)	120	2800	3300	<50	<50	<50	<50
	Benzene	0.02	0.21	0.32	<0.02	<0.02	< 0.02	<0.02
BTEX	Ethylbenzene	0.05	1.1	1.1	<0.05	<0.05	< 0.05	<0.05
BIEX	Toluene	0.2	2.3	6.4	<0.05	< 0.05	< 0.05	< 0.05
	Xylenes (Total)	0.05	3.1	26	< 0.05	< 0.05	< 0.05	< 0.05

NOTES:

I. Units = ug/g
 Z. "-" - Paramater not included in chemical analysis

3. "nv" - no value

4. Test results shown in highlighted text exceed the Table 1 Standard for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use 5. Test results shown in highlighted text exceed the Table 2.1 Standard for Volume Independent Soil for Residential/Parkland/Institutional Property Use

ENCLOSURES

0

Soil Abbreviations and Terms Used on Record of Borehole Sheets

TERMINOLOGY DESCRIBING COMMON SOIL TYPES:

Topsoil	 mixture of soil and humus capable of supporting vegetation
Peat	- mixture of visible and invisible fragments of decayed organic matter
Till	 unstratified glacial deposit which may range from clay to boulders
Fill	 soil materials identified as being placed anthropologically

CLASSIFICATION (UNIFIED SYSTEM)

Clay	<0.002mm	
Silt	0.002 to .075mm	
Sand	0.075 to 4.75mm	
	Fine	0.075 to 0.425 mm
	Medium	0.425 to 2.0 mm
	Coarse	2.0 to 4.75 mm
Gravel	4.75 to 75mm	
	Fine	4.75 to 19 mm
	Coarse	19 to 75 mm
Cobbles	75 to 300mm	
Boulders	>300mm	

TERMINOLOGY

Soil Composition	% by Weight
"traces" "some"(eg. some silt) Adjective (eg. sandy) "and"(eg. sand and gravel)	<10% 10-20% 20-35% 35-50%

Standard Penetration Resistance (SPT): Standard Penetration Resistance ('N' Values) refers to the number of blows required to advance a standard (ASTM D1586) 51 mm \emptyset (2 inch) split-spoon sampler by the use of a free falling, 63.5 Kg (140lbs) hammer. The number of blows from the drop weight is recorded for every 15 cm (6 inches). The hammer is dropped from a distance of 0.76m (30 inches) providing 474.5 Joules per blow. When the sampler is driven a total of 45 cm (18 inches) into the soil, the standard penetration index ('N' Value) is the total number of blows for the last 30 cm (12 inches).

Dynamic Cone Penetration Resistance (DCPT): Dynamic Cone Penetration Resistance is similar to a SPT with the 474.5 Joule/blow impulse provided by the free falling hammer where the split-spoon sampler is replaced by a 51 mm \emptyset , 60° conical point and the number of blows is recorded continuously for every 30 cm (12 inches).

COHESIVE SOILS CONSISTENCY

	(kPa)	(P.S.F.)	Nominal 'N' Value
Very Soft	<12	<250	0-2
Soft	12-25	250-500	2-4
Firm	25-50	500-1000	4-8
Stiff	50-100	1000-2000	8-15
Very Stiff	100-200	2000-4000	15-30
Hard	>200	>4000	>30

RELATIVE DENSITY OF COHESIONLESS SOIL

	'N' Value
Very Loose	0-4
Loose	4-10
Compact	10-30
Dense	30-50
Very Dense	>50

Cohesionless Soil Damp
Damp
Bamp
Moist
Wet
Saturated

SAMPLE TYPES AND ADDITIONAL FIELD TESTS

SS AS	Split Spoon Sample (obtained from SPT) Auger Sample	GS BS TW	Grab Sample Bulk Sample Thin Wall Sample or Shelby Tube	PP VANE DMT	Pocket Penetrometer Peak & Remolded shear Flat Plate Dilatometer
LABO SG H W _P GSA	RATORY TESTS Specific Gravity Hydrometer Plastic Limit Grain Size Analysis	S P Wı C	Sieve Analysis Field Permeability Liquid Limit Consolidation	W K Ip UNC	Water Content Lab Permeability Plasticity Index Unconfined compression

1417 28TH AVENUE E, OWEN SOUND.GPJ CVD ENG.GDT 23-10-30

1417 28TH AVENUE E, OWEN SOUND.GPJ CVD ENG.GDT 23-10-30 CVD BOREHOLE (2017)

1417 28TH AVENUE E, OWEN SOUND.GPJ CVD ENG.GDT 23-10-30

1417 28TH AVENUE E, OWEN SOUND.GPJ CVD ENG.GDT 23-10-30

